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Internal gravity waves of small amplitude propagate in a Boussinesq inviscid, 
adiabatic liquid in which the mean horizontal velocity U ( z )  depends on height 
z only. If the Richardson number R is everywhere larger than t, the waves are 
attenuated by a factor exp(- 2n(R - if&) as they pass through a critical level at 
which U is equal to the horizontal phase speed, and momentum is transferred to 
the mean flow there. This effect is considered in relation to lee waves in the air- 
flow over a mountain, and in relation to transient localized disturbances. It is 
significant in considering the propagation of gravity waves from the troposphere 
to the ionosphere, and possibly in transferring horizontal momentum into the 
deep ocean without substantial mixing. 

1. Introduction 
Many authors have studied theoretically small adiabatic perturbations to a 

shear flow in a stratified inviscid fluid, in which the mean motion is uniform in 
horizontal planes but varies with height z. Such perturbations may be of very 
different types, ranging through sound waves and through motions depending 
crucially on the vorticity in the basic flow to what are essentially gravity waves. 

If the fluid density varies greatly across the flow the differences in inertia per 
unit volume may be of great dynamical importance, but if the total range of 
density is small the predominant influence of its variations may be through 
changes in the weight of fluid per unit volume. Under such circumstances, a self- 
consistent approach, generally known as the Boussinesq approximation, is to 
regard the fluid as uniform and incompressible, except for the introduction of a 
buoyancy force in the vertical direction, equal to  the gravitational acceleration 
g times the fluctuations of the density a t  each point and time from its mean value 
there p ( z ) .  The stratification of the mean flow may then be described in terms of 
a single parameter which may vary with z, the Brunt-Vaisala frequency N ,  
defined by 

This is the appropriate definition for a liquid. I n  a compressible atmosphere, the 
same approximations may still be applied to disturbances of which the vertical 
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scale is small compared to the density scale height of the atmosphere, provided 
that p in equation (1.1) is replaced by the mean potential density, i.e. by the 
density that the air a t  height z would have if it  were reduced adiabatically to a 
standard pressure. Sound waves are thereby excluded. 

In this paper the Boussinesq approximation is a convenient framework in 
which to develop concepts which depend essentially on the buoyancy forces and 
their interplay with the shear. These concepts may probably be extended into 
a wider context, but for the present the approximation is adopted without 
comment. 

The importance of vertical variations in the mean horizontal velocity, which 
has Cartesian components ( U ( z ) ,  V ( z ) ,  0 ) ,  is measured locally by the Richardson 
number 

where the variable z in suffix position denotes differentiation. It was shown by 
Miles (1961) and Howard (1961) that, if R is everywhere greater than 2, small 
disturbances to the mean flow will show no tendency to grow spontaneously with 
time in an exponential manner; i.e. the flow is stable to disturbances of small 
magnitude. We shall confine our attention to such stable situations. 

If the basic velocity ( U ,  V )  vanishes, small disturbances take the form of 
internal gravity waves, in which there is an oscillatory interchange between 
disturbance kinetic energy and gravitational potential energy associated with 
deformation of the surfaces of constant density. The properties of such waves 
are described succinctly by Chandrasekhar (1961 , p. 85) and in more generality 
by Eckart (1960). If U ,  V vary with z ,  the disturbance is modified by the shear, 
but, if the Richardson number is larger than 4, the energy interchange is still of 
the same type as internal gravity waves. 

Such internal gravity waves, modified to a greater or less extent by shear, are 
common in the terrestrial atmosphere, and probably also in many stellar atmo- 
spheres. For a review of reported cases see Bretherton (1966). They may be 
travelling relative to the surface of the earth, having been caused by some 
transient irregularity such as a thermal, or they may be stationary, appearing 
as lee waves behind a mountain range or other obstacle. They are also found 
almost everywhere in the oceans (La Fond 1962). 

In this paper we draw attention to a mechanism whereby internal gravity 
waves, once generated, may be reabsorbed by the mean flow without necessarily 
invoking turbulence or other dissipative processes. It arises for a sinusoidal wave 
with horizontal phase velocity c, a t  a level 2, a t  which the component of the basic 
flow parallel to the horizontal wave-number is equal to c.  At such a level, if the 
basic velocity profile is such that it exists, the frequency of the wave relative to 
the surrounding fluid vanishes. It emerges that, as a wave propagates vertically 
through the critical level, it  is strongly attenuated. The Reynolds stress, which is 
an appropriate measure of the magnitude of the wave, is reduced on the other 
side by a factor exp { - 2n(R, - 9)4}, 
where R, is the effective Richardson number a t  the critical level based on the 
vertical gradient of the component of the basic flow parallel to the horizontal 
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wave-number. R, is always larger than or equal to R. If R, is unity or larger this 
is a very substantial reduction (5 x when R, = 4). The 
range 4 < R < 1 is rare in the atmosphere, except possibly below jet streams, and 
we shall give most of our attention to the case when R is moderately large (unity 
or larger). Viscosity and heat conduction are entirely ignored, so the absorption 
does not depend on their action. Extension of the analysis to include them is 
probably feasible but has not yet been done. By analogy with the critical layer 
in hydrodynamic stability theory for unstratified flows (Lin 1955, ch. 8) it may 
turn out that the change in Reynolds stress described by (1.3) is independent 
of their magnitude, provided only they are small. 

Scorer (1949) investigated the stationary train of lee waves behind a two- 
dimensional mountain in a stably stratified air stream of which the mean hori- 
zontal velocity U ( z )  normal to the mountain crest varies with height z. A station- 
ary sinusoidal wave train is possible in which the vertical disturbance velocity 
has the form w(x, z )  = R[&(k, z )  eikz] ,  

when R, = 1, 6 x 

(1.4) 

where 

This equation is based on the Boussinesq approximation and a linearization 
about the basic flow. 

The original object of the present study was to clarify theoretically how lee 
waves are affected if the wind U ( z )  reverses a t  some height z,. At such a critical 
level equation (1.5) is singular. It is not obvious whether solutions for the regions 
above and below z, may legitimately be joined to one another, or if so how. The 
present approach yields information about the time development of lee waves in 
such a basic flow, but the final steady state is beyond the scope of the theory. 
Information is gained about the dynamical processes leading to the development 
of large horizontal perturbation velocities around z, but ultimately the lineariza- 
tion used becomes invalid, and the waves probably degenerate into turbulence 
near the critical level. Nevertheless, the principles of the analysis are also applic- 
able in other circumstances which are not open to this objection. 

The two-dimensional transient disturbance produced by temporary extraneous 
forces may also be represented as the superposition of a continuum of travelling 
sinusoidal waves 

Each Fourier component has a well-defined horizontal wave-number k (assumed 
positive) and phase velocity c, and a vertical structure satisfying 

N2 

which is, not surprisingly, Scorer’s equation for a stationary wave in a mean flow 
U ( z )  - c. Equation (1.7) wasoriginallyderivedbysynge (1933). Again the problem 
arises of matching across the critical level, but consideration of an initial value 
problem shows that this should be resolved by reference to the complex c-plane, 
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with the imaginary part ci > 0. This procedure leads inevitably to the conclusion 
that the magnitude of the wave is different above and below, and if R is moder- 
ately large a disturbance arising on one side of the critical level is effectively con- 
fined to that side. If R < * the matching is quite different, and it is sometimes 
possible, though not inevitable, for normal mode disturbances to grow spon- 
taneously without exterior forcing. The basic flow is then unstable. We shall con- 
sider only R > * and invoke the Miles-Howard (196 1)  theorem that such unstable 
waves do not exist. 

Such a resolution presupposes that at  a given instant of time the velocity field 
is known everywhere and the subsequent developments are being followed. Then 
a Laplace transformation in time is appropriate. The inverse transform is for- 
mally identical to a Fourier transform, except that the contour of integration 
lies in the complex c-plane circumventing any singularities (such as a t  c = V(z) )  
in a prescribed manner. If it  is required that, at some time in the future, the 
velocity field shall take on a predetermined form, then the resolution with 
ci < 0 is the appropriate one, and the matching conditions across z, are different. 
Such a condition, however, violates our preconceptions about causality, and we 
shall consider only systems in which causes are prescribed, and events follow 
causes. An alternative procedure is to keep c strictly real, but to include heat 
conduction and viscosity in the problem. This leads to a sixth-order differential 
equation in w ( z ) .  It has not been established whether this leads to the same con- 
clusion as the initial value problem. 

For a localized transient disturbance a continuous range of values of the wave- 
number k and phase velocity c must be considered, with the appropriate vertical 
structure w(z) for each. The critical level will thus be different for each Fourier 
component (if it  exists at all), and the singularity at  z, for each separate com- 
ponent is not manifest in the complete velocity field, and the linearization remains 
valid. Nevertheless, the qualitative effect of the critical levels on the disturbances 
as a whole is profound. The absorption takes place over a finite volume, but is 
none the less real for that. 

This absorption follows from what is a t  first sight a technical detail in the 
mathematics. A more physical explanation has been given by Bretherton (1966), 
who examined the motion of wave packets of arbitrarily small vertical wave- 
length in a stratified shear flow under the assumption that the Richardson num- 
ber was also arbitrarily large. These assumptions are necessary for the consistency 
of the concepts of wave packet and group velocity. It was shown that a wave 
packet, moving with the appropriate local group velocity, would approach the 
critical level for the dominant frequency and wave-number for the packet, but 
would not reach it in any finite time. It would thus be neither reflected nor trans- 
mitted, and effectively absorbed. As the wave approaches the critical level its 
horizontal wave-number and frequency relative to the ground remain constant, 
but its frequency relative to the surrounding fluid decreases to zero. This is 
associated with a decrease in the vertical wavelength and the disturbance velo- 
city becomes more and more nearly horizontal. At the same time, all the com- 
ponents of the propagation velocity relative to the surrounding fluid become 
smaller and smaller. 
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In  the present analysis the concept of group velocity is not invoked, and the 
Richardson number is finite. Some of the wave motion does penetrate the critical 
layer, but if the Richardson number is moderately large this amount is exponen- 
tially small. No approximations are made, other than the Boussinesq approxima- 
tion and the linearization about the basic state. However, it is an unfortunate 
fact that, although the mathematical principles on which the present result is 
based are quite general and of wide application, it is difficult to find simple 
illustrations in which all the integrals involved can be evaluated in terms of 
elementary functions and the complete velocity field worked out and presented. 
Although some formal solutions are easily obtained, to comprehend them re- 
course must be had to methods for the asymptotic evaluation of integrals. These 
are difficult to present compactly together with a discussion of all the analytical 
subtleties, and they obscure the simplicity of the basic argument. 

Accordingly, we present in $52, 3 a general discussion of the motion in the 
neighbourhood of the critical level for a single sinusoidal component, together 
with evidence for the correct physical interpretation of various terms. In  $ 4 we 
consider formally a specific example, the time development of a stationary train 
of waves above a corrugation in the lower boundary which is introduced suddenly 
at time t = 0 ,  and in $5 we consider the flow field for this problem a long time 
later, although the details of the asymptotic analysis are somewhat sketchy. In  
$ 6 we consider some of the features of the flow after a general transitory disturb- 
ance has been induced in it and largely propagated away and reabsorbed. The 
characteristic pattern of critical-layer absorption is found for a continuous 
spectrum of frequencies but a single sinusoidal wavelength, and this is extended 
to a narrow band of wavelengths. These qualitative features are interpreted by 
considering the general disturbance as the superposition of a large number of 
wave packets. Finally, we calculate the additional momentum imparted to the 
mean flow by the critical-layer absorption of a localized disturbance. Once 
obtained, this can be immediately generalized to show the effect of a random 
distribution of disturbances. 

Throughout, only two-dimensional perturbations to a unidirectional mean 
velocity field U(x) will be considered. Fourier analysis of a three-dimensional 
disturbance in a wind whose direction changes with height is inevitably in terms 
of two-dimensional waves, each with its own (vector) horizontal wave-number, 
and each affected only by the mean flow parallel to the horizontal wave-number. 
Thus all inferences about the critical layer in two-dimensional motion are directly 
applicable in three dimensions, with the proviso that the effective Richardson 
number will depend on the orientation of the wave-number, but is always greater 
than or equal to that defined in (1.2). 

In  the interpretation given in this paper, stress is laid on wave motions which 
are propagating at an angle to the horizontal, either upwards or downwards, 
rather than on the oscillations which occur in the waveguide formed by a strati- 
fied fluid between two rigid horizontal bounding surfaces. In describing standing 
lee waves it is natural to look for circumstances in which wave energy is trapped 
in a waveguide near the surface of the earth by some natural lid at  which total 
reflexion of an upward propagating wave takes place. This occurs, for example, 
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if there is an overlying deep layer of homogeneous liquid ( N 2  = 0; U ,  V constant) 
for it is apparent that equation (1.7) is there exponential in type. However, such 
total internal reflexion is exceptional, and usually some a t  least of the wave 
energy continues to propagate upwards (Eliassen & Palm 1960). The waveguide 
is then imperfect. Upward propagation may continue to great heights and is 
probably of great importance in the upper atmosphere (Hines 1963). Anyhow, i t  
is normally physically instructive to distinguish as far as possible between the 
upward and the downward propagating components at  each level. If there is a 
critical level it is imperative, for waveguide modes with real phase velocity do 
not exist. This follows because the Reynolds stress for the upward and downward 
components must then be everywhere equal and opposite, in order to satisfy the 
upper and lower boundary conditions, which is inconsistent with the matching 
conditions across 2,. 

One geophysical application of these results is concerned with limitations on 
the propagation of gravity waves from the troposphere up to the ionosphere. This 
has already been discussed by Bretherton (1966). At a late stage in the prepara- 
tion of the present manuscript the authors discovered that absorption at a 
critical layer has also been postulated simultaneously and independently by 
Hines & Reddy (1966), although the method of analysis is different, and some of 
the consequences for the upper atmosphere are discussed there. 

Another possible application, which awaits quantitative evaluation, is in the 
oceans. Horizontal phase speeds for internal gravity waves there are generally 
less than 1 m/s, and considerably smaller in the higher waveguide modes. No 
direct measurements have been made of phase velocities, but it seems plausible 
from considering orders of magnitude of the ocean currents that critical levels 
will occur fairly frequently. It is not possible from existing data to estimate how 
much energy or momentum is present in modes with a critical level. The mechan- 
ism described here then implies the vertical transfer of horizontal mean momen- 
tum into the depths of the ocean, without significant mixing of fluid particles. 
In other words, it  exposes the possibility of an effective vertical diffusivity for 
momentum which is very much larger than the diffusivity for salt or other tracers 
used in water mass analysis. If substantiated, this conclusion could have con- 
siderable implications in the theory of the general circulation of the oceans. 

2. Sinusoidal waves near the critical layer 
We make the following assumptions: 
(a) the motion is two dimensional; 
( b )  it  is inviscid and adiabatic; 
(e) the Boussinesq approximation; 
(d)  the rotation of the earth may be neglected; 
( e )  the perturbation velocities (u, ur) from the basic state U ( z )  are so small 

that a 
1u,,+w;14 I f + U k l  

throughout the region of interest; 
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(f) the Richardson number 

R = N2/UE > 4 everywhere; 

( 9 )  a t  each critical level V,  > 0. 
It is of interest to inquire into the effects of relaxing assumptions (b )  and (d),  
but this cannot be pursued here. Assumptions (a )  and ( g )  are made for conveni- 
ence of presentation. If U, < 0 at the critical level, some signs must be altered 
in the matching conditions, and the interpretation of some terms must be re- 
versed. The differences are tabulated a t  the end of $3. Assumption ( e ) ,  on the 
other hand, is of critical importance to the analysis. For a pure sinusoidal wave it 
would seem inevitably to fail just at the critical level where slat + U a/ax 
vanishes. However, every disturbance which is not completely steady or periodic 
in time must be represented as the integral over many sinusoidal components, 
each with a different critical level, and the importance of the non-linear effects 
must be measured by the effects of the operators in assumption ( e )  on the com- 
plete velocity field, not on the individual components. This importance may be 
assessed a posteriori, by making the linearization, computing the velocity field 
on that basis, and then substituting to obtain the magnitude of the non-linear 
terms. If the velocity field obtained by the linearized theory is everywhere finite 
and differentiable, then for sufficiently small amplitude disturbances the linear- 
ization is justified. A pure sinusoidal wave with real phase velocity always has a 
singularity a t  the critical level, but the disturbances considered here, which 
develop from a state of rest relative to the basic state, are all continuously 
differentiable at all finite times after their initiation. In  the motion above a 
stationary corrugation on a boundary, discussed in $04, 5, the non-linear terms 
ultimately become important in a neighbourhood of the critical level, however 
small the corrugation, but, in the disturbance produced by a transient stimulus, 
this is only so after the disturbance has been almost entirely absorbed, if at all. 

It may be shown (Bretherton 1966) that the vertical velocity w satisfies the 
linearized equation 

It foIlows at once that a Fourier component with the form (1.6) has a vertical 
structure satisfying equation (1.7). For a uniform stream with U independent of 
z ,  this reduces precisely to the governing equation for internal gravity waves, the 
gravitational restoring force being measured by N 2 .  In a shear flow, the vertical 
variations of mean vorticity may also provide a restoring force, measured by 
- ( U  - c ) U , .  The critical level z, for the component, if it  exists, is defined by 

V(z,)-c, = 0, (2.2) 

where c = c, + iCi. (2-3) 

If c is real (ci = 0), equation (1.7) is singular there. 
The mathematics necessary to connect solutions of equation (1.7) on the two 

sides of the singularity is given by Miles (1961). Our main concern in this paper 
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is with the interpretation of this analysis, so it is necessary to restate part of it. 
We shall assume that ci is small, specifically 

lu,l u,2ci < 1. (2.4) 

Then we may use the method of Frobenius to obtain expansions in power series 
of the two independent solutions. Near the critical level the complete solution 

where A and B are arbitrary constants and 

,.u = (R-$)* > 0. (2.6) 

If ci = 0, there is a branch point a t  z = z, in both solutions. The inclusion of 
further terms in the power series does not modify the structure near the branch 
point; it  multiplies each solution by a function of x - z, and of ci which is analytic 
in each variable in a neighbourhood of the origin and tends to unity there. 

If ci > 0, then, as z - z, decreases from positive values which are large compared 
with cilUz to negative values, the argument of x - z, - ic,/U, changes continuously 
from 0 to - 7 ~ .  If, for the sake of definiteness, we fix the branch of the complex 
powers in (2.5) by taking 

(z-z,)&+ia = Iz-zclBei~lz-W if > zc, (2.7) 

then it follows that the correct interpretation is 

if x < z,. (2.8) I (2-x )$+ip = - i e p I x - z  I&e-ipIz-zcI 

( 2 - z  )&WP = -ie-BnIz--,l~eiaIz-z,I 

Thus the magnitude of each term in (2.5) a t  a given distance from the critical 
level is not the same above and below i t  but differs by a factor of exp ( & 2,u7~), 
however small ci may be provided only that it is positive. This is the mathe- 
matical ground for the main assertions of this paper. The expressions (2.8), 
however, oscillate rapidly near z = z,. These results hold for general N2(z) 

and U ( z )  provided these are continuous and sufficiently differentiable. They fail, 
however, for a situation in which N 2  and U are stepwise constant, and such 
layered models of a continuous situation are totally inadequate for discussing 
the present situation. 

3. Upward- and downward-propagating waves 
I n  this section we seek to interpret the solutions just described as upward- and 

downward-travelling waves. I n  a medium of which the properties vary substan- 
tially over a wavelength i t  is difficult to specify exactly which part of an oscilla- 
tory motion corresponds to a wave travelling in the upward direction and which 
in the opposite one, for there is a continual interchange between the two. I n  a 
uniform medium, on the other hand, precise and physically important identifica- 
tions may be made. When the properties of the medium vary slowly with position 
such an identification also seems appropriate (Bretherton 1966), and in the 
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present case is helpful in understanding the implications of the mathematics. 
There are difficulties about imparting precision to it when the value of p, which 
is a measure of the Richardson number, is too small, but as our main interest is 
with large (though not infinite) ,u we shall not dwell on them. First, however, we 
must be quite clear about the corresponding interpretation in a uniform medium. 

It is clear from (1.7) that, in a uniform medium in which U and N are constant, 
every wave with horizontal wave-number k and phase velocity c has a vertical 
structure of the form 

,$j = A eimz + B , (3.1) 

where A ,  B are arbitrary constants, and 

For the sake of definiteness, we settle the branch for m by requiring that 

if ci > 0 ,  mi > 0. 
This implies that 

The complete spatial distribution of velocity associated with the first solution 
in (3.1) is 

and i t  represents a plane wave with phase front 

w = R[Aexp{i(kx+mz-kct)}], 

Ex + mz - ket = constant, 

at  least for the range of frequency kc for which m and c are real. If U - c is nega- 
tive, so that the wave is propagating in the positive Ox direction relative to the 
air in which it is, mis also negative, so the phase fronts move downwards, whereas, 
if U - c is positive, m is also positive. Thus the first solution describes a wave with 
a downward component of phase velocity. Nevertheless, the influence of such a 
wave propagates upwards, and we shall interpret this solution as an upward- 
travelling wave. The second solution 

&, = Be-i?nz 

will likewise be interpreted as a downwai-d-travelling wave. Such an interpreta- 
tion has been given by Eliassen & Palm (1960) and other writers, but its sig- 
nificance has not always been understood by everyone working in the field, and 
controversy has resulted (Scorer 1954). We shall look at it in three ways. 

In the first, we note that the frequency w ( = kc)  is given from (3.2) as 
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According to (3.4) we must take the - sign when m and U - c are positive, and 
the + sign when they are negative. In  either case, for the first solution 

which is always positive. But according to theory which is standard in a uniform 
medium this is the upward component of group velocity. A slow modulation on 
a sinusoidal train of this wave-number moves without change of shape with this 
velocity. In  a slowly varying medium the form of the modulation may change, 
but it still moves essentially with the group velocity (Bretherton 1966). 

A second view of the first wave solution of (3.1) comes from considerations 
of energy. The total mean rate of working by the fluid below any level on the 
fluid above is m, where p is the disturbance pressure, and - denotes an average 
over a horizontal wavelength or over a period. The equation of horizontal 
momentum for the disturbance 

1 

P 
(U-c)u,+=pz = 0, 

+pw = -p(u-c)uG,  (3.7) 

where j5 is the mean density, shows that 

and it is easily shown that for the solution exp (imz) the latter is positive. Thus 
wave energy is flowing upwards. For the solution exp ( - imz) the flow of energy 
is downwards. However, puW also describes the mean rate of upward transfer of 
horizontal momentum by the wave, so such a transfer is inseparable from the 
flow of energy. 

The third way of seeing that the first solution of (3.1) represents an upward- 
travelling wave is by considering c slightly complex. We have seen that, if the 
wave motion began a t  a finite time in the past, it  is significant to consider a 
slowly growing wave with ci > 0. Because of (3.3) the solution A exp(imz) 
tends exponentially to zero as z+m. Thus the wave amplitude a t  every point 
increases with time, but at any given time it is smaller for more positive values 
of x .  Changes in amplitude thus move upwards. The solution Bexp(-imz), 
on the other hand, is exponentially large as z --f 00, and represents a downward- 
propagating wave. 

Each of these three ways of viewing an upward-travelling wave in a uniform 
medium has its counterpart when applied to the solutions near the critical level 
which are given by (2 .5) .  The function ( z - ~ , ) ~ + ~ f l  oscillates rapidly when x-z,  
is small, although the amplitude and wave-number change with position. If x - x ,  
is real and positive 

( z  - z,)*+ip = Iz - z,I 4 [cos p log I z - z,I + i sin ,ix log I x - z,[] 

so the local wave-number would seem to be 

If ,LL is large, this and the wave amplitude change relatively little over a vertical 
distance m-l, so that the wave is locally sinusoidal. Equation (3.8) also describes 
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variation in phase when x - z ,  is real and negative, but according to (2.8) the 
amplitude is different. Now if CL is positive 

(1 - $R-l)* N (1 - $R-')& N lu - -- N __- 
z-ze u, x-zc U(2) - c (3.9) 

and comparison with (3.4) shows that if R is large this is almost identical with the 
corresponding expression for the wave-number of an upward-travelling wave in 
a uniform medium. Since (3.9) holds on both sides of the critical level, the 
wave-number also changes sign with U ( z )  - c,  consistent with (3.4). 

Alternatively, we consider the Reynolds stress and the vertical energy flux for 
the two solutions (2.10). Following Miles (1961), 

(3.10) 

This is essentially discontinuous across z,, for each solution separately changes 
sign as well as magnitude. However, for the first solution A(z  - z,)*+~P, the energy 

- 
flux 

, p(  u - c )  uw 

is positive both below and above, and for the second solution it is everywhere 
negative. So the first wave is associated with an upward transfer of energy. 

It was pointed out by Eliassen & Palm (1960) that for any stationary sinu- 
soidal pattern of waves in a shear flow the Reynolds stress is independent of 
height (corresponding to a constant upward flux of horizontal momentum), but 
the energy flux is not (because there is an interchange of energy between the 
wave and the mean flow associated with the transfer of momentum up or down 
the gradient of mean velocity U ( z ) ) .  Their proof of the constancy of the Reynolds 
stress fails at  a critical level, because any exponential growth of the wave (how- 
ever small) is crucially important there, and the wave pattern cannot be regarded 
as unchanging in time. If the upward-travelling wave is identified, as here, with 
the first solution, the Reynolds stress is reduced in magnitude after the wave has 
passed through the critical level. Below z,, the sign of the Reynolds stress for this 
solution is such that the wave gives up its energy to the mean flow as it moves 
upwards, and the energy flux decreases with height. Above z, the wave regains 
part of its energy, but the measure of its regenerative capacity is the Reynolds 
stress, which is attenuated by a factor exp(-2,un). The second solution 
B(z - z,)*+ describes a downward-travelling wave, with a downward-energy flux 
and a Reynolds stress which is smaller in magnitude below x,. Thus it too is 
attenuated on passage through the critical layer. 

Finally, we look at the amplitude of the motion when e, > 0,  and the wave is 
growing in time. Unlike a wave in a uniform medium, the motion is only different 
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from the case ci --f 0 in a limited region above and below the critical layer; in 
which the frequency relative to the fluid k( U - c )  is comparable to or smaller 
than the growth rate ci. However, in this region the amplitude of the vertical 
velocity for the upward-travelling wave passes smoothly between the expression 
A Iz - z,I$exp (pn) appropriate well below the critical level to that appropriate 
above Alz- zcl*, which is substantially smaller. In  this region the amplitude of 
the growing wave decreases upwards. Conversely, for the downward-travelling 
growing wave the amplitude is larger at the top of the transition region than it is 
a t  the bottom. 

Rela- 
tive 

phase 
veloc- 

ity 
Propa- 
gating 

+ + ]up 

- - ]Down 

- - 1  
+ + )”. 

Down 

TABLE 1. Summary o f  the properties of the two solutions near the critical level. 
y = [ (N2/U:) -B] t  is assumed real and positive throughout. The arrow indicates the 
quadrant in the (x, -,)-plane in which the phase velocity relative to the fluid a t  that level 
lies. The wave fronts are always perpendicular to the relative phase velocity, with slope 
lwI/Jul. This slope is equal to iE]z-z,J and hence varies with position. 

Before leaving the physical interpretation it should be noticed that for the 
solutions with ci = 0,  although the vertical velocity w is small near z = z,, 

is large there, and varies in magnitude like ( z  - zJ-4. This is consistent with the 
particle motion becoming more and more nearly horizontal as x, is approached; 
the kinetic energy is entirely in the horizontal motion, but the potential energy is 
still associated with vertical displacements, so the wave frequency tends to zero. 
The wave energy per unit volume varies as ( x  - z,)-l, and the shears associated 
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with the wave vary as (z-zC)--%. However, if ci =/= 0 all these infinities at  z, dis- 
appear. For a growing wave the horizontal velocities have not had time to build 
up to a very large value. The singularities are characteristic of a stationary wave 
train which has persisted for an infinite time. When a wave of definite frequency 
is being systematically and continuously generated elsewhere in the flow by the 
boundaries or other causes (as in lee waves) this build-up is of great importance 
(see $0 4, 5). For transient motions, on the other hand, with a continuous distribu- 
tion of Fourier components, each with infinitesimal amplitudes, singularities in 
the total integrated disturbance may never appear : they are an artifact of the 
analysis in each component. 

4. The time-dependent disturbance above a sinusoidal corrugation 
As an illustration of the remarks of the preceding two sections, we consider 

here in formal detail a specific problem which is in many respects similar to those 
considered by Case (1961) and Eliassen, Hoiland & Riis (1953). We take N 2  to be 
independent of height and U ( X )  as shown in figure 1. 

U ( Z )  = U'(z-h) (0  < z < Bh) 
= U'h ( X  > 2h). 

h 
Z 

z c  

h 
0 

4 P 

2n/k 

FIGURE 1. The basic state, showing the critical level (broken line) and the 
critical layer (hatched). 

The fluid is unbounded above, and initially at rest everywhere ; 

t < 0; w = 0 everywhere. (4.2) 

A t  time t = 0, a disturbance is introduced by raising a sinusoidal corrugation 
on the lower boundary a t  z = 0, and subsequently maintaining it; 

t > 0; w=acoskx on z =  0. (4.3) 
This vertical velocity would be induced by the mean wind - U'h flowing over 

a corrugation of elevation - (a/U'hk) sin kx. The disturbance due to an isolated 
mountain would be obtained by superposing such disturbances for many differ- 
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ent values of k, but this superposition does not introduce any novel features into 
the analysis. The assumed time dependence of the elevation of the lower boundary 
is also unrealistic : it  is formally a convenient way of defining a well-posed initial- 
value problem. An alternative is to envisage the mean flow U(z )  increasing from 
rest to the prescribed profile. 

The upper boundary condition is 

(4.4) t > 0 ;  w+O as z+m. 

A long time after the disturbance is introduced, it may be necessary to look at 
very large values of z to find the disturbance small, but we are assuming that, for 
any given t ,  it  is always possible. The source of the disturbance is thus un- 
equivocally at x = 0. 

The governing differential equation for small perturbations w(x, z, t )  is equa- 
tion (2.1). If the amplitude a is sufficiently small, the linearization on which this 
is based is self-consistent a long time after the motion begins. For any given 
amplitude, however, it  ultimately breaks down. Nevertheless, we investigate the 
solution up to the time that the theory becomes inconsistent, and may in principle 
justify this for any value of t  by taking a sufficiently small. With the broken line 
profile of equation (4.1), U,, is everywhere zero, except at  the height z = 2h. At 
this level U,, in the governing equation may be replaced by a delta function 

U,, = - U ' ~ ( Z  - 2h) (4.5) 

or equivalently the pressure and vertical velocities may be matched across a 
perturbed interface between two separate fluids in regions (1) and (2). The latter 
procedure leads to the same linearized matching conditions at z = 2h as are 
obtained by formally applying (4.5). 

It is convenient at this stage to introduce dimensionless variables 

X z-h c = - ,  g = -  7 = U't, 
h h '  (4.6) 

a dimensionless wave-number and phase velocity 

K = kh, y = e/U'h,  (4-7) 

R = p2+& = N2/U12. 

where, without loss of generality, K is taken as positive; together with the 
Richardson number 

(4.8) 

To obtain a complete solution, we assume everywhere a sinusoidal variation 
with 6, and then Laplace transform in time, 

WG-, 597) = R[%C, 7) eiK51 

(4.9) 

bearing in mind that the relevant part of the complex plane is where y$ > 0. 
This integral (4.9) then converges rapidly for all disturbances which do not in- 
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crease exponentially or faster as 7 -+ 00. The Laplace transform of the governing 
equation assumes different forms in regions (1) and (2): 

(4.10) 

region (2) : a,, + (- - in - 1 < 5 < 1 .  (4.11) 

Each of these is simpIy Scorer’s equation (1.7). The curvature of the velocity 
profile is not neglected; it appears in the matching conditions 

at 5 =  1. (4.12) 

8, = a,, 

81c-@2c+-8 = 0 
1 

1 - Y  

The remaining boundary conditions are 

region(1): 8-+0 as 5-+00, (4.13) 

a 1  region(2): 8 = -__- on 5 = - 1 .  d( 277) i K Y  
(4.14) 

The pole a t  y = 0 in (4.14) arises from the specific time dependence assumed 
in (4.3). If the forcing at z = 0 is removed again after a finite time T,,, the factor 
l/iKy must be replaced by 

(4.15) 

which has no singularities in the complex y plane. The singularities in the steady 
solution of our problem which appear as T + 03 are associated with this pole, and 
are a consequence of the forcing being maintained for an indefinitely long time. 

In region (l), the only solution of equation (4.10) which is consistent with the 
upper boundary condition (4.13) is 

&j = A,emdC-l), (4.16) 

where (4.17) 

with 3 ( m l )  > 0 when yi > 0. This branch is forced by the vanishing of w for large 
6 under the conditions for which the Laplace transform (4.9) is convergent, i.e. 
yi > 0. 

In region (2), the general solution is 

8 = ( 5 - Y ) : ( A 2 ~ i p ( K I ; - K Y ) + B 2  L&C--KY)}, (4.18) 

where Iip, I P i ,  are the modified Bessel functions of the first kind, with complex 
order & i p .  Near the origin 



53 8 

so, if the constant A is replaced by 
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A,( - &K)’”/I’(ip + I) ,  

the structure of equation (4.18) near 5 = y is identical with that described in 
equation (2.9). 

It is a straightforward matter of algebra to apply conditions (4.12) a t  the 
interface and (4.14) at the lower boundary to determine the constants A,, A,, B,. 
We write, for brevity, 

(4.19) 

whereas in region ( 2 )  8 is determined by 

(4.21) 
a 1 {+ + im( 1 - y ) }  Ii,(hl) - 1 B 

- 4277)  iKy Q ( -  1 -y)8’ 

The complete formal solution to the problem is then given by the inverse Laplace 

&(y, <) e--iKY7Kdy (4.32) 
transform 

r 

where the contour of integration I’ lies along the real y-axis, except where there 
is a singularity in the integrand, in which case it lies above, in yi > 0. 

5. Asymptotic analysis for large T 
The integral (4.22) is in general hopelessly complicated, but if T is large methods 

of asymptotic analysis akin to that of ‘steepest descents’ (Jeffreys & Jeffreys 
1946, p. 472) may be applied to give great simplifications. The dominant contribu- 
tions to the integral come from neighbourhoods in the complex y plane of points 
where either the integrand is singular, or the derivative with respect to y of the 
coefficient of T in the exponent vanishes. If C; is kept finite as T -+ co, there are no 
points in the latter category (‘saddle points ’) and the largest contribution comes 
from the pole a t  y = 0. 

We shall see that this implies that, except in a neighbourhood of the critical 
level a t  < = 0 which shrinks with time, the motion everywhere becomes that for 
a standing wavepattern satisfying Scorer’s equation, except that the magnitude 
of the motion above the critical layer is given by the matching conditions de- 
veloped in $ 2 .  Thus, if the Richardson number w 1 or greater, the motion above 
the layer is very drastically reduced in magnitude. Superposed on this steady 
pattern are several small decaying oscillations. One of these is the remnant of the 
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transient waves induced by the impulsive start to the motion as they are absorbed 
in the shear layer, each at the critical level appropriate to their frequency. 

There is a region above and below the critical level which decreases in thickness 
as time goes on and in which the motion is not yet steady, even to a first approxi- 
mation. We shall call this region the critical layer. Above and below it the steady 
state is achieved quite quickly; within it the maximum magnitude of the horizon- 
tal velocities increases with time, but after any finite interval the velocities 
and their spatial derivatives are everywhere finite and well behaved. In  the 
critical layer the horizontal momentum associated with the upward-travel- 
ling wave is nearly all transferred into the mean flow and the wave is effectively 
absorbed. 

If tJT is kept fixed as T+ 00, the largest contribution comes from a saddle point. 
It describes an upward-moving dispersing group of waves, the dominant fre- 
quency a t  any point being exactly such that the corresponding vertical com- 
ponent of group velocity is [/;I.. Above this group the disturbance has not yet 
penetrated; below it the steady-state solution of Scorer’s equation is achieved. 
It describes the influence of the impulsive start to the motion, but ultimately 
passes by any given point. 

To see these results it is necessary to catalogue the singularities of the integrand 
in equation (4.22). These are: 

(a )  y = 0,  pole, arising from the applied boundary condition (4.3); 
( b )  y = - 1, branch point, A, = 0; 
( c )  y = + 1, branch point plus essential singularity, A, = 0, m,+00; 

( d )  y = 1 
( e )  y = 5, < 1, branch point, (6-y)-hI,ilc[~(g-y)] = 0. 
In  addition there are possible poles where Q = 0. It is difficult to be certain 

where all these are. There are none in y, > 0. This follows from a theorem proved 
by Howard (1961), that in a general stratified shear flow there are no exponen- 
tially growing or decaying normal modes for a disturbance which vanishes on 
the boundaries and at infinity, provided the Richardson number is everywhere 
larger than +. A zero of Q in ci > 0 corresponds precisely to such an exponentially 
growing mode. Howard’s theorem does not rule out zero’s in y, < 0, for the ex- 
pression for a, continued analytically across the real axis from y, > 0, does not 
vanish as z-+co. Such zeros need not concern us here, as they describe exponen- 
tially decaying solutions. Since I,, is essentially a complex number even if its 
argument is real, it  seems unlikely that there are any on the real y axis. If atten- 
tion is restricted to A,, A, small (equivalent to considering only waves whose 
vertical scale is small compared with their horizontal scale), the zeros of &may be 
found explicitly and are not relevant to the present analysis, although in placing 
them care must be taken to remain on the correct Riemann sheet in the y-plane, 
corresponding to a continuous deformation from yi > 0, with the branch of 
Iiir correctly defined. 

Assuming that singularity ( e )  does not coincide with any of the others, we 
deform the contour of integration I? according to figure 2, so that almost all of 
it lies in the region y, < 0. As T+CO the integrand is exponentially small, except 
in those regions which are near the real axis yi = 0. 

R / K ,  branch point, m, = 0; 

34 Fluid Mech. 27 
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For fixed <, the dominant contribution to the integral (4.19) comes from the 
pole at y = 0, and is equal to 277i times the residue a t  the pole. Thus, as r --f 03, 

w(5, <, r )  --f R[(Sn)Ji~lim (yz3(y))eiKc]. 
Y-+O 

FIGURE 2. The contour of integration, after deformation. 

which is a stationary upward-propagating wave as interpreted in 9 3. In  region ( 2 )  

The first term describes an upward-propagating wave, but the magnitude of lip 
is, for given Is], smaller by a factor exp ( -,m) above the critical level g = 0 than 
it is below it. The critical level thus exercises a crucial influence on the flow. I fp  
is large ( > 1) there is very little motion anywhere above the critical layer. 

If c/r is held fixed and positive as r + 03, there is a saddle point for the exponent 

(5 .3)  

in (4.19), where 

i.e. where 

This is exactly the condition that the vertical component of group velocity of a 
wave of frequency KY in the uniform region (1) should equal 2 3 ,  and the standard 
method of steepest descents yields the contribution to  the integral, which de- 
scribes a wave of frequency equal to that at the saddle point, which decreases in 
amplitude like 7-4. This decrease is consistent with conservation of wave energy 
because the band of frequencies corresponding to the region between two slightly 
different values of </7 occupies a larger and larger region of physical space as 

The contributions to  the integral associated with the remaining singularities 
all tend to zero as 7 -+ 03 for fixed 5. This follows from the Riemann-Lebesgue 
lemma, because in the neighbourhood of each, along the real axis for 7, 

7-fO3. 



Internal gravity waves in a shear $ow 531 

for any two points a, ,8 on the real axis near the singularity. Then, according to 
the lemma 

Ia’&(y) e--iKYTdy+ 0 as r --f a. 

The same is also true for the first vertical derivative of w, so (5.1) describes 
the dominant part of the velocity field as r -+ 03 for fixed 5 ( $: 0, 

However, it is of interest to examine these contributions more closely, par- 
ticularly from singularity (e). 

The contribution from the neighbourhood of y = 5 (singularity ( e ) )  may be 
evaluated approximately by putting 

1). 

Y = 5+& (5.4) 

and expanding the integrand as a power series in 6, on the assumption that only 
those values of 6 which are small are of interest. The leading term of the series in 
region (2) has the form 

c i K C T  S,, ( - 6 /277)~{A , (~)  ( - 6);t  + B,(c) ( - S)+} e--iKSTKdS, (5.5) 

where A2(C), B,(<) are the values of A,, B, when y is put equal to 6, and the con- 
tour of integration re is that portion of the deformed contour which lies near the 
point y = 5. It passes from 6% < 0 to Si < 0 round the branch point at 6 = 0. The 
rapid convergence of the integral (5.5) when Si becomes negative is ensured by 
the factor exp ( - i ~ S r ) .  If i- is large only small values of 6 contribute to the 
integral, and ignoring all but the leading term of the power series expansion is 
justified. It may be written 

where 
‘ 0 2  

0 
C(p)  = { tY*+ipe-edtY (exp [37r(p + i)/4] - exp [ - n-(p + i)/4]}. (5.7) 

The main interest of equation (5 .6 )  lies in its structure. It describes locally 
plane sinusoidal waves with phase K(C - cr). The lines of constant phase are thus 
everywhere advected with the basic flow velocity [, and tilted to a nearly hori- 
zontal orientation as i- --f 03. The horizontal wave-number remains constant, but 
the vertical wave-number becomes large. 

The amplitude of the vertical velocity at  any given height decays as 7-8, but 
the horizontal velocity (which is proportional to ws) decreases only as 7-6.  The 
plane waves are also modulated by the amplitude functions A,($, B,(<) and the 
time variation r T i p ,  but these variations are slow compared with the changes in 
phase. 

It is easily verified that the functions 

1 ( 5 . 8 )  
= R [ e i k ( x - U t ) t - $ F i p  

are solutions of the basic governing equation (2.1) in an unbounded uniform 
shear U = U‘z, provided the motion is quasi-horizontal (a2/ax2 < a2/az2). The 

34-2 
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energy density for such motions is uniform and decays as t-l; the Reynolds stress 
is also uniform, but decays as P.;The Reynolds stress for both upward- and down- 
ward-travelling solutions has the same sign, the advected wavefronts of the plane 
waves being orientated so that wave energy is transformed to the mean flow. 
Equation (5.7) shows that the Reynolds stress for the upward-travelling part is 
dominated by the motion for each component below its appropriate critical level, 
and conversely for the downward-travelling part. 

The oscillation is thus being absorbed into the mean flow. This absorption is 
associated with the continuous distribution of the disturbance over a band of 
frequencies, each frequency with a distinct critical level. The resulting disturb- 
ance has no discontinuities in velocity, although the shear (proportional to wzz) 
does increase with time. 

In the velocity field above a sinusoidal corrugation, these decaying plane waves 
are the final remnant of the waves of all frequencies generated at the impulsive 
start. There are other remnants, associated with the branch points (b) ,  ( c )  and 
(d). The structure of these can be investigated in a similar way; they all describe 
oscillations with the same frequency all over the flow field, and all decay to zero 
as 7 + co. These singularities are a consequence of the broken line velocity profils 
we adopted, and probably would not appear if a more realistic variation of U(z )  
were assumed. However, this will not be pursued here. 

So far we have assumed that none of the singularities in the list (a)-(e) coincide 
with one another. Thus the points 5 = - 1,0  or + 1 have been excluded from the 
discussion. When singularity ( e )  coincides with the points ( b ) ,  (c) or (d), the inte- 
grand is still absolutely integrable and the corresponding contribution tends to 
zero as 7-tco. More interesting, however, is the region [ + O  as 7+m, i.e. within 
the critical layer. The separation of the contributions from singularities (a )  and 
(e) is then no longer permissible; their neighbourhoods must be treated together 
and a different asymptotic expression for the contribution is required. It may 
be found by expanding the integrand as a power series in y-  5 but assuming y 
is also small. If we write 

the leading term in the series is 
y - g = h/K7, 

The contour rae is from A = - ico to h = - ico round both A = 0 and h = - ~ 7 5 .  

Unfortunately, even these simplified integrals cannot be integrated in terms 
of elementary functions, but the structure of the solution is clear. Each integral 
is a function of the parameter K T ~ .  If this is large two separate contributions from 
the pole and the branch point are appropriate, as previously described. If ~ 7 g  is 
of order unity, however, w and its vertical derivatives are smoothly varying 
functions of 5 and 7 ,  but the velocity field is essentially time dependent. The 
width of this critical layer in which, even a very long time after starting, the 
flow has still not settled down to a steady state is comparable to (~7)-1, and thus 
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decreases with time. A typical vertical velocity in it has magnitude of order d ;  
a typical horizontal velocity is of order r-4. Thus ultimately non-linear terms 
which have been ignored to date will become important, and the theory becomes 
invalid. However, in principle this invalidation may be delayed indefinitely by 
taking u small enough. The important result is that, long before this, the flow 
above and below the critical layer has settled down to a steady state, with a small 
decaying oscillation superimposed, and that steady state is the same as that ob- 
tained by ignoring the details of the critical layer, but matching round it in the 
way described in Q 2. Above and below the critical layer the Reynolds stress is in- 
dependent of height, but it is much smaller above it. The change in the Reynolds 
stress, which is associated with continuing absorption of momentum from the 
wave, takes place across the critical layer, and the resulting acceleration of the 
mean flow is confined within an ever-narrowing band of heights. The sign of this 
acceleration of the mean flow is such as to decrease the height of the critical layer 
with time. 

Finally, it  is worth remarking on the simplifications which occur when K < 1, 
and the motion is everywhere very nearly horizontal. Then A,, A, are small for 
the final steady state y = 0 ,  and m, N R = (p2 + a)*. Also 

throughout the region of interest - K < A < K. Then 

(5.10) 

If p is greater than about unity, this is dominated by the factor epn, compared 
to which e-p* is negligible. Under such circumstances 

In  the region (2) above the critical layer the ratio of the vertical energy fluxes or 
of the Reynolds stresses associated with the downward- and upward-travelling 
waves is 

(5.12) 

Thus very little energy is reflected by the discontinuity in V,  at the interface 
between regions (1) and (2). Below the critical layer the discrepancy between the 
energy fluxes is even larger, being 

Thus, if p > 1, the effect of the region above the critical layer on the region below 
it is quite negligible; the critical layer acts as an absorbing barrier of great 
effectiveness. 
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6. Transient disturbances in a shear flow 
A similar analysis to that of 5 4 may be used to describe the disturbance due to 

a transient stimulus in a shear layer, with or without layers of uniform velocity 
above and below. Unfortunately the resulting integral which is the formal solu- 
tion is hopelessly intractable. Nevertheless, it  is possible to make some general 
statements about what happens. 

First, we consider the asymptotic perturbation velocity field a long time after 
a spatially sinusoidal stimulus. In  the analysis there is now no pole at y = 0 ,  so 
the velocities everywhere decay with time, and the largest contributions come 
from singularities of types (b)-(e) defined in 35. Of these, ( b ) ,  (c) and ( d )  are arti- 
facts of the chosen broken line basic velocity profile, and would not be present 
in an unbounded uniform shear flow. They are associated with decaying oscilla- 
tions which are coherent over the whole flow field. 

Of more interest are the velocities associated with singularity (e). It was shown 
in $5 that these have the form 

Each term describes locally plane waves of very small vertical wavelength (the 
vertical wave-number is - kt d U / d z ) ,  and with a frequency given by simple ad- 
vection by the local mean flow of a pattern which is periodic in z. The amplitude 
of the vertical velocity decays like t-8, but the horizontal perturbation velocity 
is given by 

and decays more slowly. Advected decaying plane wave solutions of this type 
have also been invoked by Phillips (1966) in a proposed energy spectrum for 
internal waves. 

It is clear from their derivation that the decay of velocity fields of the form 
(6.1) is a manifestation of critical-layer absorption for a continuous spectrum of 
frequencies. Each frequency is associated with a critical level xc, and at each 
height x there is a corresponding frequency kc for which it is critical. The function 
F ( z )  is proportional to the amplitude in upward-travelling waves of that fre- 
quency excited by the original disturbance. It provides a spatial display of the 
frequency spectrum. 

A qualitative explanation of this effect is provided by the following argument. 
If ,u is large, the development of the original disturbance may be followed using 
concepts of wave packets and group velocity. It was shown by Bretherton (1966) 
that a wave packet travelling vertically should stagnate in a region near the 
critical level corresponding to its dominant frequency. After a long time a dis- 
turbance composed of wave packets of all frequencies but initially without a 
clear spatial structure should be redistributed by the dispersive wave propagation 
until the dominant frequency a t  each level is that for which the vertical com- 
ponent of group velocity is vanishingly small, i.e. for which that level is critical. 

It should also be noticed that equation (6.1) is concerned only with disturb- 
ances which are purely sinusoidal in x. In  practice a stimulus is localized in space 
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as well as time, and it is necessary to integrate equation (6.1) over a continuous 
spectrum of wave-numbers k. Explicit formulae cannot be obtained for a general 
initial disturbance, but, if the latter can be represented as a slowly varying 
modulation A(%) on a non-zero dominant wave-number k,, it appears to be con- 
sistent to integrate with respect to x after the asymptotic form for large time has 
been obtained. If attention is concentrated on a fixed value of x ,  the horizontal 
dependence of the disturbance is then entirely accounted for by replacing the 
factor exp ik(x - U(x) t} in equation (6.1) by 

(6.3) 

and k by k, wherever else it implicitly occurs. The contribution of this form is 
associated entirely with the continuous spectrum of horizontal phase velocities c 
for which a critical level lies within the fluid. In  addition there may be contribu- 
tions which disperse in a horizontal direction from propagating components 
without a critical level. These, however, inevitably propagate to infinity faster 
than the advection speed U ( z )  at any level. Thus a wave packet clustered around 
a dominant wave-number ko does not behave qualitatively differently from a 
single wave-number, and the superposition of a continuum of wave-numbers 
seems not to introduce any surprising novel features. 

The absence of horizontal dispersion a t  each level z, which is implied by ex- 
pression (6.3), is consistent with the propagation of wave packets. It was shown 
(Bretherton 1966) that, when a packet moves vertically towards its critical level 
zC, both the vertical component of group velocity and the difference from U(z,) of 
the horizontal component decrease to zero as tP2. The displacement of the packet 
in both directions relative to a frame of reference moving horizontally with 
velocity U(zc)  is thus strictly bounded, and all packets, wherever they originate, 
which have the same critical level soon tend to be moving together without dis- 
persion. If a packet is originally moving in a vertical direction away from its 
critical level, it either propagates away completely or is internally reflected within 
a finite time, in which case it again ends up near level zc. 

It is now possible to check the validity of the linearization on which the whole 
calculation is based ( $ 2 ,  assumption (e)) .  Using velocity fields (6.1) and (6.2) we 
may estimate the non-linear terms 

A(% - j'Jt) eik&--UO 

whereas 

UW,,+WW, = O ( F 2 t 2 ) ,  

w ~ +  UW, = O(Ft-8). 

Thus, in the absence of dissipation, the non-linearities eventually become im- 
portant after a time of order F-2, however small F may be, and the linearization 
fails. At the same time the velocity gradients u, have become comparable to 
the basic shear V,, so it is possible that the flow becomes turbulent. However, the 
vertical scale of the perturbations is then of order kc1F2,  so any turbulence which 
results may be expected to be of low intensity. Also, by this time the disturbance 
energy is already almost completely absorbed into the mean flow, so the main 
conclusions of this paper should be unaffected. 

A final result which may be obtained simply concerns the total change of 
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momentum of the mean flow as a result of the absorption of the disturbance. 
To discuss this we write the total velocity as 

'(') + ul(x> ' 9  $) + u ( x 7  z ,  t ) ,  w(x7 '7 t ,  + w(x, x 7  t).  (6.6) 

Here the perturbations u, w and U,, W, are assumed to be localized in space, 
vanishing sufficiently rapidly a t  all finite times for their integrals to converge. 
U,, TC may roughly be described as second-order Eulerian mean velocities, 
associated with first-order small-amplitude disturbances u, w of zero mean. 
However, their separation from u, w need be more precise only to the extent of 
specifying 

j_kmudx  = j + m w d x  -02 = 0. (6.7) 

It then follows from continuity that, if I45 vanishes a t  some level, 

Tqdx = 0. 

Now [+mulax 
J - W  

does not necessarily vanish, and may be identified as the mean flow momentum a t  
that level associated with the disturbance, and we shall calculate its total change 
during the absorption process. 

The equation for the horizontal velocities is 

a a a 1 
- ( U + U,+ U )  + 
at P 

( u + U, + U)z  + {( u + U1+ U )  (W, + w)] + -pz = 0. (6.8) 

Integrating with respect to x, and remembering that p ,  u, w, U, are assumed to 
vanish sufficiently rapidly as 1x1 --f 00, 

?I+^; U,dx = -- (U,+u)(W,+w)dx. 
at - m  az a 

If the disturbance to the basic flow U ( z )  is of small amplitude, it is certainly 
consistent to assume that U, < u, W, < w, and to calculate w to first order in the 
manner of the remainder of this paper. Thus we have 

[J:: uldx];=o = -Jam d t J  +O0 dx - a (uw). 
az 

(6.10) 

This is a familiar result concerning the role of the Reynolds stress. It is important 
to realize that it involves only first-order theory, although computation of U, a t  
each point involves solving second-order equations. 

Expressing the disturbance as a double integral over a continuum of wave- 
numbers and horizontal phase velocities according to equations (2.4) and (2.6), 
we have from Parseval's theorem 

(6.11) 
-m  - m  

where (6.12) 
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is the Reynolds stress for each Pourier component as computed in §3. Thus the 
total momentum transferred upwards past each level is simply the integral over 
all wave-numbers and frequencies of the Reynolds stress associated with each 
Fourier component separately. This is only true of the total effect, not at any 
finite time. 

Now the Reynolds stress for each Fourier component is independent of height 
above and below its critical level, but is discontinuous there, so the only contribu- 
tions to the right-hand side of equation (6.10) at any given height z come from 
those for which 

c = U(2).  (6.13) 

Integration with respect to c is then equivalent to integration with respect to z, 
and 

(6.14) 

where GEE? is the discontinuity in Reynolds stress associated with that Fourier 
component with phase velocity defined by equation (6.13) and wave-number lc. 

Equation (6.14) is the main result of this section. It states that the total trans- 
fer of momentum to  the mean flow associated with the passage and partial ab- 
sorption of a transient disturbance is finite, distributed over a range of heights, 
and calculated from the discontinuity across the critical layer (if any) of each 
Fourier component separately. If the disturbance is initiated below z = 0 and 
travels upwards, and if the Richardson number is moderately large, the upward- 
travelling wave is almost completely absorbed a t  its critical level. The dis- 
continuity is then simply minus the value of the Reynolds stress a t  z = 0, which 
is in turn by equation (3.7) directly connected to the net upward flux of wave 
energy a t  z = 0. It has been derived only for a localized disturbance, but it is 
clear that the result can be generalized to a spatially homogeneous distribution of 
random disturbances. The integral on the left of equation (6.14) must be replaced 
by the mean horizontal velocity at a point, and the Reynolds stress for each 
Fourier component replaced by the average per unit distance in the Ox direction. 

7. Conclusions 
Internal gravity waves propagating with a vertical component of group 

velocity in shear flow are almost completely absorbed at a critical level (if it  
exists) at which the horizontal component of phase velocity of the wave is equal 
to the mean velocity of the fluid normal to the wave front, provided the Richard- 
son number R, there is larger than about 1. For % < R, < 1 less complete absorp- 
tion occurs, measured by the transmission coefficient exp { - 27r(Ec- $)4} for the 
energy flux divided by the local relative frequency. The case R, < $ is not 
discussed. This absorption is associated with a change in the Reynolds stress 
between two constant values above and below the critical layer, implying a 
transfer of horizontal momentum by the wave into the mean flow around the 
critical level. Previous authors (Eliassen & Palm 1960) have shown that, even 
in the absence of a critical level, there is a distributed interchange of wave energy 
with the mean flow a t  all levels, but, for a sinusoidal wave with real phase velocity, 
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the Reynolds stress should be independent of height, except possibly at a critical 
level. 

The absorption mechanism is not dependent on viscosity or other dissipative 
processes, and its modification by these has not yet been investigated. It arises 
out of a linear theory of small perturbations on the basic flow, an ambiguity in 
the solution being settled by consideration of an initial-value problem in which 
the motion at some given time is quite general but assumed known and allowed 
to develop subsequently, rather than being restricted by the requirement that at 
a later time the velocity field must conform to an arbitrary and predetermined 
specification. A more physical picture has been given by Bretherton (1966), in 
which it is shown that a wave packet travelling with the appropriate local group 
velocity will approach the critical level but never reach it, being neither trans- 
mitted nor reflected. Near the critical level the vertical wavelength becomes very 
small. However, the analysis of this paper covers a wider range of circumstances, 
in which the concepts of wave packet; and group velocity cannot be clearly 
defined, for which the Richardson number is not necessarily large, nor is the 
vertical scale of variation of the Brunt-Vaisala frequency and of the vorticity of 
the basic flow much greater than the vertical wavelength for the waves. 

It is, however, required that the distribution of V(z),  V(z )  is continuous and 
differentiable a t  least near any critical levels. A model of a shear flow in which the 
mean velocity is uniform in discrete layers, as considered by Hines & Reddy 
(1966), cannot give for a pure sinusoidal component the partial transmission or 
the change in Reynolds stress which are obtained here, for the critical level is 
inevitably either buried in the zone of discontinuity of mean velocity between 
two layers where the local Richardson number is effectively zero, or distributed 
Over a complete layer in which the relative phase velocity is zero and in which 
infinitesimal wave theory is quite inconsistent. Indeed, the conclusions reached 
by Hines & Reddy (1966) are significantly different from the present ones: in 
the absence of viscosity they claim total reJlexion at the critical level, with no 
absorption of momentum, and rely on viscosity to dissipate the wave there, 
reducing the process to one of absorption. 

The analysis of § Q  4 , 5  shows that, if a single Fourier component describing a 
sinusoidal wave travelling in the horizontal direction is excited continuously by 
some exterior mechanism, the horizontal velocities in a layer of decreasing thick- 
ness about the critical level will, according to linearized inviscid theory, increase 
in magnitude systematically and indefinitely, though less rapidly than indicated 
by conservation of wave energy. Thus ultimately non-linearities become im- 
portant however small the forcing mechanism and it seems plausible that a 
breakdown to turbulence will occur. However, the magnitude of the transmitted 
wave is established long before this occurs, apparently independently of the 
details of the flow in the critical layer. 

Furthermore, if the forcing is transient and only active for a finite time the 
indefinite build-up of the horizontal velocities does not occur. Such a transient 
disturbance can only be described by a continuous band of Fourier components, 
each with its own critical level, and the critical level absorption takes place Over 
a range of heights. Equation (5.6) describes the asymptotic velocity distribution 
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a long time later where the last remnants of the disturbance appear as locally 
plane waves advected by the shear and decaying in magnitude. Even if linear 
theory does eventually break down, for any disturbance which is started from 
rest the absorption of momentum by the mean flow and the partial transmission 
of the wave are largely complete before the non-linearities have grown substantial. 
In  $ 6  it is shown that the total time-integrated transfer of momentum to the 
mean flow by the Reynolds stress for a localized transient disturbance may be 
computed from the Reynolds stress a t  one level for each Fourier component 
separately. 

The main geophysical applications of these conclusions which appear at present 
are in the propagation of gravity waves in the atmosphere from the troposphere 
to the ionosphere, and in the transfer of horizontal momentum by internal waves 
from the surface down to the interior of the ocean, without associated mixing of 
water, salt and heat. The first of these is described in Bretherton (1966) and 
developed further in an independent study by Hines & Reddy (1966). The second 
is still unexplored, but potentially significant. A third example on which i t  
throws some light is concerned with lee waves, when the incident stream over the 
obstacle reverses at some height. It is predicted here that there should be little 
disturbance above the critical level, but large-amplitude perturbations of the 
horizontal velocity should build up near there, and turbulent breakdown seems 
probable. Gerbier & Berenger (1961) report turbulence found by glider pilots at 
such heights, with little or no lee waves above, but their findings are not obviously 
consistent with the case studies by which they are illustrated and the evidence 
is somewhat obscure. 
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